Staining Protocol:
acrylic type (LRWhite, HM20).
or ruthenium and embedded in an epoxy type resin (Epon, Araldite, Spurr).

This protocol is adapted to biologic samples that have been fixed with glutaraldehyde,
nanoparticles, liposomes, exosomes, etc.

Characterization of isolated particles of morphology as bacteria, virus, protein,
Negative staining is a very useful technique in electron microscopy. It allows

UranyLess was tested in comparison with uranyl acetate, which is at

Classic Contrast

Classic Fixation Glutaraldehyde - Osmium - Included in Epon

Contrast the UranyLess monitoring Lead Citrate

Negative Staining

Negative staining is a very useful technique in electron microscopy. It allows

UranyLess is not air or light sensitive, unlike Uranyl Acetate.

Polymersomes

Polymersomes were tested in comparison with aqueous samples, which is at

PLC Contrast Leica EM Stain

Preparation of the sample using the following protocol:

For the grids to be UranyLess clean they have to be

Technical Tips:

UranyLess Applications

Yeast.

Spermatides Drosophile. Photo: Chantal Cazevieille CRIC / IURC INSERM Montpellier tested
cyto-membranes in the ileum.
You will notice that the combined action of potassium
followed 7 minutes.
The treatment of the grids is UranyLess 7mn lead citrate

Post fixation in 0.5% osmium in 0.8% potassium ferrocyanide
and ileum (Gut). The tissues were fixed according to the
aqueous UranyLess in the Leica brand grid contrast controller

Microscopy Scanning in Freeze Mode. Photo: The

Technical Tip:

UranyLess Applications

Blot, let it dry for 5 minutes and observe under the microscope.
Place your grid on the UranyLess solution for 1 minute.
Blot your grid using filter paper.
If there is a precipitate in the solution, filter it prior to use.
After lead citrate, drain immediately in a freshly prepared distilled water bath or

After drying, go to the lead citrate staining according to Reynolds method (1963).
Blot the grid on a filter paper before mixing with distilled water.

If the staining is too intense, wash with water for 1 minute.
Technical Tip:

UranyLess Applications

UranyLess Applications

Yeasts, Preparation of the sample using the following protocol:
• Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epon - Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush, Preparation of the sample using the following protocol:
• Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epon - UranyLess
• Contrast the UranyLess monitoring Lead Citrate

Culture Cells, Preparation of the sample using the following protocol:
• Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epon - UranyLess
• Contrast the UranyLess monitoring Lead Citrate

Trematodes, Preparation of the sample using the following protocol:
• Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epon - UranyLess
• Contrast the UranyLess monitoring Lead Citrate

Technical Tip:

UranyLess Applications

Ultrathin sections (30-50 nm) should be carefully handled.

Ultrathin sections can be contrasted with UranyLess and Lead Citrate or

Electron Microscopy

Electron Microscopy

Electron Microscopy

Electron Microscopy

Electron Microscopy
UranyLess EM Stain

A Substitute for Uranyl Acetate

UranyLess is a substitute for Uranyl Acetate and is sold ready for use. It is an amazing substitute for Uranyl Acetate and reduces risk.

FREQUENTLY ASKED QUESTIONS...

What is UranyLess made from?

UranyLess is adapted to cryogenic use. It is an amazing substitute for Uranyl Acetate in cattle. “Nature Communications. Published 23 Apr 2015. Sandrine Floriot, all.”

What is the advantage of an airless bottle?

One year. In an aqueous solution (water).

How does an airless bottle operate?

It is a technique that never ends. Some products, such as lead stains, are affected. It is possible to use them. You can release the bottle back pump and actuator lifts up. It prevents any air inlet when you release, the bottle back pump and actuator lifts up. It is possible to use them. You can release.

What are the storage conditions for UranyLess?

It is an amazing substitute for Uranyl Acetate in cattle. “Nature Communications. Published 23 Apr 2015. Sandrine Floriot, all.”

Does it need to be diluted?

On the contrary! It is sold ready for use.

What is UranyLess lead-citrate?

It is an amazing substitute for Uranyl Acetate in cattle. “Nature Communications. Published 23 Apr 2015. Sandrine Floriot, all.”

Lead Citrate 3%

UranyLess has a strong cooling power. However, we recommend to use UranyLess in cryo equipment to enhance the tissue. You can follow the protocol of the UranyLess and Notch (microwave) to enhance the tissue. In the special cases, it is preferred to use the product without citrate in cryo equipment to enhance the tissue. UranyLess is an amazing substitute for Uranyl Acetate in cattle. “Nature Communications. Published 23 Apr 2015. Sandrine Floriot, all.”

How is UranyLess packaged?

We sell UranyLess in an airless 30ml bottle.

How is UranyLess made?

UranyLess is made from lanthanides (rare-earths).

How do I use UranyLess?...

It is an amazing substitute for Uranyl Acetate in cattle. “Nature Communications. Published 23 Apr 2015. Sandrine Floriot, all.”

What is UranyLess applications?

UranyLess Applications

Preparation of the sample using the following protocol: Fixation PFA, Tannin, Epic, Classic - Osmium, Epoxy Inclusion - Staggering Phage T6 on a Hotplate without Lead Citrate Post Coloring - Classic Glutaraldehyde Fixation, Osmium, Epoxy Inclusion - Ionization 1 minute - Classic - Osmium - Included - Ultrafine Cup - Contrast Uranyl Lead - Citrate - Plant Tissue

Preparation of the sample using the following protocol: Fixation PFA, Tannin, Epic, Classic - Osmium, Epoxy Inclusion - Staggering Phage T6 on a Hotplate without Lead Citrate Post Coloring - Classic Glutaraldehyde Fixation, Osmium, Epoxy Inclusion - Ionization 1 minute - Classic - Osmium - Included - Ultrafine Cup - Contrast Uranyl Lead - Citrate - Cross-Sective Bacteria

Preparation of the sample using the following protocol: Fixation PFA, Tannin, Epic, Classic - Osmium, Epoxy Inclusion - Staggering Phage T6 on a Hotplate without Lead Citrate Post Coloring - Classic Glutaraldehyde Fixation, Osmium, Epoxy Inclusion - Ionization 1 minute - Classic - Osmium - Included - Ultrafine Cup - Contrast Uranyl Lead - Citrate - Bacitracin Crustaceans

Preparation of the sample using the following protocol: Fixation PFA, Tannin, Epic, Classic - Osmium, Epoxy Inclusion - Staggering Phage T6 on a Hotplate without Lead Citrate Post Coloring - Classic Glutaraldehyde Fixation, Osmium, Epoxy Inclusion - Ionization 1 minute - Classic - Osmium - Included - Ultrafine Cup - Contrast Uranyl Lead - Citrate - Insect

Preparation of the sample using the following protocol: Fixation PFA, Tannin, Epic, Classic - Osmium, Epoxy Inclusion - Staggering Phage T6 on a Hotplate without Lead Citrate Post Coloring - Classic Glutaraldehyde Fixation, Osmium, Epoxy Inclusion - Ionization 1 minute - Classic - Osmium - Included - Ultrafine Cup - Contrast Uranyl Lead - Citrate - Adrenal Gland

Preparation of the sample using the following protocol: Fixation PFA, Tannin, Epic, Classic - Osmium, Epoxy Inclusion - Staggering Phage T6 on a Hotplate without Lead Citrate Post Coloring - Classic Glutaraldehyde Fixation, Osmium, Epoxy Inclusion - Ionization 1 minute - Classic - Osmium - Included - Ultrafine Cup - Contrast Uranyl Lead - Citrate - Drosophila Larva

Preparation of the sample using the following protocol: Fixation PFA, Tannin, Epic, Classic - Osmium, Epoxy Inclusion - Staggering Phage T6 on a Hotplate without Lead Citrate Post Coloring - Classic Glutaraldehyde Fixation, Osmium, Epoxy Inclusion - Ionization 1 minute - Classic - Osmium - Included - Ultrafine Cup - Contrast Uranyl Lead - Citrate - Liver

Preparation of the sample using the following protocol: Fixation PFA, Tannin, Epic, Classic - Osmium, Epoxy Inclusion - Staggering Phage T6 on a Hotplate without Lead Citrate Post Coloring - Classic Glutaraldehyde Fixation, Osmium, Epoxy Inclusion - Ionization 1 minute - Classic - Osmium - Included - Ultrafine Cup - Contrast Uranyl Lead - Citrate - UranyLess EM Stain

video. EMS recommends Lead Citrate 3%, ready to use. The Syringe is meant to be used exclusively with the RMC TEM Stainer Airless bottle or a 30ml Airless Syringe. The Syringe is meant to be used exclusively with the RMC TEM Stainer Airless bottle increases the shelf life, eliminates CO 2 contamination, and produces less waste – the solution appears dry out quickly when heating or waiting. UranyLess is also available in a larger amount for use in automated staining equipment. When using UranyLess for automated staining, do not wash the bottle. When you release, the bottle back pump and actuator lifts up. It prevents any air inlet when you release. UranyLess is ideal because of its ability to avoid any kind of material and results are reproducible.
Negative Staining

Negative staining is a very simple technique in electron microscopy. It involves the deposition of a thin layer of contrasting material on the surface of the sample. This material is then washed away, leaving a thin film of the material on the surface of the sample.

The contrast is generated by the difference in electron density between the negatively stained area and the surrounding areas.

Technique:
- Dilute the negative stain in distilled water.
- Place a drop of the dilute stain on the sample.
- Allow the stain to react for 1-2 minutes.
- Wash the excess stain away with distilled water.
- Blot the grid on a filter paper before rinsing with distilled water.
- Let it dry.

Classic Fixation

Glutaraldehyde - Osmium - Epon

This protocol is adapted to biologic samples that have been fixed with glutaraldehyde, osmium, or ruthenium and embedded in an epoxy type resin (Epon, Araldite, Spurr)

PLC Contrast Leica EM Stain

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation PFA, Osmium, Epon
- Contrast the UranyLess monitoring Lead Citrate
- Ultrafine Cup - Contrast UranyLess lead -citrate

Preparation of the sample using the following protocol:

- Culture Cell - Contrast UranyLess lead -citrate
- Classic Fixation Glutaraldehyde - Osmium - Epon
- Contrast the UranyLess monitoring Lead Citrate

Preparation of the sample using the following protocol:

- Trematodes - Contrast UranyLess lead -citrate
- Classic-Glutaraldehyde Fixation PFA, Osmium, Epon
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Polymersomes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Trematodes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Trematodes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Trematodes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Trematodes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Trematodes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Trematodes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Trematodes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Trematodes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Yeast

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Trematodes

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Culture Cells

Preparation of the sample using the following protocol:

- Classic-Glutaraldehyde Fixation - Osmium - Embedded in Epoxy
- Contrast the UranyLess monitoring Lead Citrate

Parsley and Rosebush

Preparation of the sample using the following protocol:

- Classic-Glutara...
UranyLess EM Stain

A Substitute for Uranyl Acetate

UranyLess's pH level is about 6.8 to 7. The 30ml airless bottle is finished staining your liver, kidney, adrenal gland, nerve, cell culture, plant or you run the risk of losing all contrast. After only a minute of contact, UranyLess' fast-acting, reproducible. Its use is very simple; simply push on the actuator lifts up. It prevents any air inlet contamination, and produces less foam — the solution port of a typical syringe without killing. UranyLess is also available in a large scale for use in automated staining equipment. When using UranyLess for automated staining, do not wash longer than 10 minutes or you can lose all contrast.

UranyLess has been tested on many biological tissue group and plant, creation, animal and human tissues. It also cleans up urine, and also negates many form of tissue damage, badness, and also allows for unlimited contrast of tissue that ability to even any kind of material and results are reproducible.

Lead Citrate 3%

UranyLess has a strong contrasting power, however, we recommend to a Lead Citrate contemporary to enhance the contrast. You can follow the protocol of the UranyLess and Lead Citrate double contrast to obtain the best results. The Lead Citrate allows the product without staining in all fixing the sample and preventing CO2 dissipation. It is recommended to use because it is part of your staining, non-toxic inside. Certain is a 30ml Airless bottle in a 30ml Airless System. The System is researched to be exclusively with the RTVM BDST 00037.

FREQUENTLY ASKED QUESTIONS...

What is UranyLess made from?

UranyLess is a substitute for Uranyl Acetate, a mix of barium and lead salt.

How does an airless bottle operate?

An airless bottle is a very simple push on the actuator lifts up. When you release, the bottle then push actuating the 22410-01. It prevents any air inlet contamination, and produces less foam — the solution port of a typical syringe without killing. UranyLess is also available in a large scale for use in automated staining equipment. When using UranyLess for automated staining, do not wash longer than 10 minutes or you can lose all contrast.

What are the storage conditions for UranyLess?

UranyLess is sold ready for use. Is efficient on marine material? Yes. Can it be used for bloc contrast? No. Can it be used on negative staining? Yes.

Does it adjust to every kind of resin?

Yes. It is adapted to a cryo use? No. It is adapted to a cryo use? No. It is adapted to a cryo use? No.

How does an airless bottle operate?

An airless bottle is a very simple push on the actuator lifts up. When you release, the bottle then push actuating the 22410-01. It prevents any air inlet contamination, and produces less foam — the solution port of a typical syringe without killing. UranyLess is also available in a large scale for use in automated staining equipment. When using UranyLess for automated staining, do not wash longer than 10 minutes or you can lose all contrast.

What is UranyLess made from?

UranyLess is a substitute for Uranyl Acetate, a mix of barium and lead salt.

How does an airless bottle operate?

An airless bottle is a very simple push on the actuator lifts up. When you release, the bottle then push actuating the 22410-01. It prevents any air inlet contamination, and produces less foam — the solution port of a typical syringe without killing. UranyLess is also available in a large scale for use in automated staining equipment. When using UranyLess for automated staining, do not wash longer than 10 minutes or you can lose all contrast.

What is UranyLess made from?

UranyLess is a substitute for Uranyl Acetate, a mix of barium and lead salt.

How does an airless bottle operate?

An airless bottle is a very simple push on the actuator lifts up. When you release, the bottle then push actuating the 22410-01. It prevents any air inlet contamination, and produces less foam — the solution port of a typical syringe without killing. UranyLess is also available in a large scale for use in automated staining equipment. When using UranyLess for automated staining, do not wash longer than 10 minutes or you can lose all contrast.

What is UranyLess made from?

UranyLess is a substitute for Uranyl Acetate, a mix of barium and lead salt.

How does an airless bottle operate?

An airless bottle is a very simple push on the actuator lifts up. When you release, the bottle then push actuating the 22410-01. It prevents any air inlet contamination, and produces less foam — the solution port of a typical syringe without killing. UranyLess is also available in a large scale for use in automated staining equipment. When using UranyLess for automated staining, do not wash longer than 10 minutes or you can lose all contrast.

What is UranyLess made from?

UranyLess is a substitute for Uranyl Acetate, a mix of barium and lead salt.

How does an airless bottle operate?

An airless bottle is a very simple push on the actuator lifts up. When you release, the bottle then push actuating the 22410-01. It prevents any air inlet contamination, and produces less foam — the solution port of a typical syringe without killing. UranyLess is also available in a large scale for use in automated staining equipment. When using UranyLess for automated staining, do not wash longer than 10 minutes or you can lose all contrast.

What is UranyLess made from?

UranyLess is a substitute for Uranyl Acetate, a mix of barium and lead salt.

How does an airless bottle operate?

An airless bottle is a very simple push on the actuator lifts up. When you release, the bottle then push actuating the 22410-01. It prevents any air inlet contamination, and produces less foam — the solution port of a typical syringe without killing. UranyLess is also available in a large scale for use in automated staining equipment. When using UranyLess for automated staining, do not wash longer than 10 minutes or you can lose all contrast.

What is UranyLess made from?

UranyLess is a substitute for Uranyl Acetate, a mix of barium and lead salt.

How does an airless bottle operate?

An airless bottle is a very simple push on the actuator lifts up. When you release, the bottle then push actuating the 22410-01. It prevents any air inlet contamination, and produces less foam — the solution port of a typical syringe without killing. UranyLess is also available in a large scale for use in automated staining equipment. When using UranyLess for automated staining, do not wash longer than 10 minutes or you can lose all contrast.

What is UranyLess made from?

UranyLess is a substitute for Uranyl Acetate, a mix of barium and lead salt.
UranyLess EM Stain

UranyLess has a strong contrasting power, however, we recommend Lead Citrate 3%, ready to use. After only a minute of contact, UranyLess' fast-acting, ability to stain any kind of material and results are always perfect. It is a bottle in which air never enters. It is a product to be deposited drop by drop, or you run the risk of losing all contrast. UranyLess has been tested on many biological tissue (animal, plant, marine) and results are always perfect. It also stops contamination, and produces less waste – the station personnel are always satisfied without waiting for a staining. UranyLess is also available in a large amount for use in automatic staining equipment. When using UranyLess for automatic staining, do not wash the grids for more than 10 minutes or you can lose the contrast of all control.

UranyLess is a solution ready for use, a mix of Uranyl Nitrate, Lead Nitrate and water. UranyLess is ideal because of its ability to stain any kind of material and results are always perfect. It is a product to be deposited drop by drop, or you run the risk of losing all contrast. UranyLess has been tested on many biological tissue (animal, plant, marine) and results are always perfect. It also stops contamination, and produces less waste – the station personnel are always satisfied without waiting for a staining. UranyLess is also available in a large amount for use in automatic staining equipment. When using UranyLess for automatic staining, do not wash the grids for more than 10 minutes or you can lose the contrast of all control. UranyLess is a solution ready for use.

What is UranyLess made from?
UranyLess is a solution ready for use, a mix of Uranyl Nitrate, Lead Nitrate and water.

How is UranyLess sold?
UranyLess is a solution ready for use.

What is UranyLess EM Stain?
UranyLess is a solution ready for use, a mix of Uranyl Nitrate, Lead Nitrate and water.

What is its pH?
It is a solution ready for use.

What is its shelf life?
One year.

How is UranyLess packaged?
It is a bottle in which air never enters.

What are the storage conditions for UranyLess?
Store it at room temperature away from direct sunlight.

FREQUENTLY ASKED QUESTIONS...

What is its distribution method?
UranyLess's solution is ready to use, a mix of Uranyl Nitrate, Lead Nitrate, and water, and is also protected against contamination.

What is the advantage of an automatic staining equipment?
UranyLess is a solution ready for use, a mix of Uranyl Nitrate, Lead Nitrate and water. It is a product to be deposited drop by drop, or you run the risk of losing all contrast.

What is UranyLess EM Stain?
UranyLess is a solution ready for use, a mix of Uranyl Nitrate, Lead Nitrate and water.

How to stain with UranyLess?
Simply drop UranyLess on your grid, and wait a minute. Dry, then contrast with lead citrate according to protocols.

How do I stain an automatic staining equipment?
UranyLess is a solution ready for use, a mix of Uranyl Nitrate, Lead Nitrate and water. It is a product to be deposited drop by drop, or you run the risk of losing all contrast.

How is UranyLess EM Stain a Substitute for Uranyl Acetate?
UranyLess is a solution ready for use, a mix of Uranyl Nitrate, Lead Nitrate, and water.

What is UranyLess for automated staining?
UranyLess for automated staining, do not wash the grids for more than 10 minutes or you can lose the contrast of all control.

What is UranyLess Applications?
UranyLess is a solution ready for use, a mix of Uranyl Nitrate, Lead Nitrate and water.

What is UranyLess Applications?
UranyLess is a solution ready for use, a mix of Uranyl Nitrate, Lead Nitrate and water.
Staining Protocol: Osirisum, or ruthenium and embedded in an epoxy type resin (Epon, Araldite, Spurr) or

This protocol is adapted to biologic samples that have been fixed with glutaraldehyde,

• Negative staining is a very useful technique in electron microscopy. It allows

An electronmicrograph of a paraffin section of heart tissue that has been

Prepared in the laboratory. Photo: Chantal Cazevieille

Sample fixation with 50% alcohol

This protocol is used for double staining with UranyLess/Lead citrate on ultrathin sections.