A NEW SCANNING ELECTRON MICROSCOPE METHOD FOR DETERMINATION OF ADIPOCYTE SIZE IN HUMAN FAT TISSUE:
CORRELATION WITH WEIGHT LOSS AND FAT DEPOT BURDEN.

W Guo, S Bigornia, W Xie, Lisi Sullivan, M McDonnell, K Clemente, I Leizerman, T Pirtskhalava, JL Kirkland, N Gokee, BE Corkey, AC Apovian

Abstract

Objective: To compare the wet SEM and CO methods for assessment of adipocyte size.

Methods

A total of 84 subjects from the Stanford and Weight Management Clinic at Harvard Medical Center.

Results

Intraobserver variation for the wet SEM method was calculated with the intra-class correlation coefficient of 0.99.

Hypocaloric diet consisting of 38% CHO, 28% pro, 34% fat. Subjects were on this diet with optional 400 kcal nonfat food supplements for 6 weeks. Abdominal subcutaneous fat tissue biopsies were taken before and after weight loss. **blk: Vlack, car: Caribbean, cau: Caucasian, aa: Africa American, his: Hispanic Latino; all subjects were female.

Discussion

One of the new SEM methods is particularly useful for assessing subcutaneous adipocytes or fat cell size distribution in subcutaneous adipose tissue biopsies. This method is especially suitable for lipid imaging due to the contrast mechanism, which is sensitive to changes in the amount of lipid within adipocytes. The method is also suitable for studying fat cell size distribution in subcutaneous adipose tissue biopsies. This method is especially suitable for lipid imaging due to the contrast mechanism, which is sensitive to changes in the amount of lipid within adipocytes. The method is also suitable for studying fat cell size distribution in subcutaneous adipose tissue biopsies.

References

1. Nishi A, C.G., Vinkur A, S. Guo, R.G. Core, M. Chen, C. Ichikawa, H. Iwamoto, R. K. Heslop, Human adipose tissue cell size distribution and cell size distribution in subcutaneous and subcutaneous fat cell size distribution in subcutaneous adipose tissue biopsies. This method is especially suitable for lipid imaging due to the contrast mechanism, which is sensitive to changes in the amount of lipid within adipocytes. The method is also suitable for studying fat cell size distribution in subcutaneous adipose tissue biopsies. This method is especially suitable for lipid imaging due to the contrast mechanism, which is sensitive to changes in the amount of lipid within adipocytes. The method is also suitable for studying fat cell size distribution in subcutaneous adipose tissue biopsies.

Results

Intraobserver variation for the wet SEM method was calculated with the intra-class correlation coefficient of 0.99.

Hypocaloric diet consisting of 38% CHO, 28% pro, 34% fat. Subjects were on this diet with optional 400 kcal nonfat food supplements for 6 weeks. Abdominal subcutaneous fat tissue biopsies were taken before and after weight loss. **blk: Vlack, car: Caribbean, cau: Caucasian, aa: Africa American, his: Hispanic Latino; all subjects were female.

Discussion

One of the new SEM methods is particularly useful for assessing subcutaneous adipocytes or fat cell size distribution in subcutaneous adipose tissue biopsies. This method is especially suitable for lipid imaging due to the contrast mechanism, which is sensitive to changes in the amount of lipid within adipocytes. The method is also suitable for studying fat cell size distribution in subcutaneous adipose tissue biopsies. This method is especially suitable for lipid imaging due to the contrast mechanism, which is sensitive to changes in the amount of lipid within adipocytes. The method is also suitable for studying fat cell size distribution in subcutaneous adipose tissue biopsies.

References

1. Nishi A, C.G., Vinkur A, S. Guo, R.G. Core, M. Chen, C. Ichikawa, H. Iwamoto, R. K. Heslop, Human adipose tissue cell size distribution and cell size distribution in subcutaneous and subcutaneous fat cell size distribution in subcutaneous adipose tissue biopsies. This method is especially suitable for lipid imaging due to the contrast mechanism, which is sensitive to changes in the amount of lipid within adipocytes. The method is also suitable for studying fat cell size distribution in subcutaneous adipose tissue biopsies. This method is especially suitable for lipid imaging due to the contrast mechanism, which is sensitive to changes in the amount of lipid within adipocytes. The method is also suitable for studying fat cell size distribution in subcutaneous adipose tissue biopsies.